Axial Flux Motors

1. Fundamental Magnetic Flux Orientation

graph LR
    subgraph "Radial Flux Motor"
        A[Stator] --> B[Air Gap]
        B --> C[Rotor]
        D[Flux Direction: āŸ‚ to shaft]
    end
    
    subgraph "Axial Flux Motor"
        E[Stator Disc] --> F[Air Gap]
        F --> G[Rotor Disc]
        H[Flux Direction: ∄ to shaft]
    end

axial-vs-radial.png

Radial Flux Motors (Traditional)

Axial Flux Motors

2. Construction Architecture

graph TD
    subgraph "Radial Flux Construction"
        A1[Cylindrical Stator] --> A2[Slotted Core]
        A2 --> A3[Distributed Windings]
        A4[Inner Rotor] --> A5[Magnets/Windings]
        A5 --> A6[Cylindrical Air Gap]
    end
graph TD
    subgraph "Axial Flux Construction"
        B1[Disc Stator] --> B2[Concentrated Windings]
        B3[Disc Rotor] --> B4[Surface Magnets]
        B4 --> B5[Flat Air Gap]
        B6[L/D Ratio less than 0.3]
    end

Radial Flux Design

Traditional cylindrical construction:
iStock-155388818-3.jpg

Axial Flux Design

Disc-like construction:
STSA-axial-flux-motors.png

3. Electromagnetic Theory Differences

graph LR
    subgraph "Torque Generation"
        A[Magnetic Field B] --> C[Force on Conductor]
        B[Current I] --> C
        C --> D[Torque = r Ɨ F]
    end
    
    subgraph "Scaling Laws"
        E[Radial: T āˆ D²L] 
        F[Axial: T āˆ D³]
    end

Torque Production

WrenchTorque2.gif
Radial Flux:

T=kƗBradialƗIƗLactive

Axial Flux:

T=kƗBaxialƗIƗractive2

EMF Generation

7372f0d01cdc7d70da918be6f8169a06.gif
Radial Flux:

EMF=BƗlƗv

where l = axial length

Axial Flux:

EMF=BƗr×ω×N

where r = radius

4. Magnetic Circuit Analysis

graph TD
    subgraph "Radial Flux Path"
        A1[N Pole] --> A2[Air Gap] 
        A2 --> A3[Stator Tooth]
        A3 --> A4[Stator Back Iron]
        A4 --> A5[Return Path]
        A5 --> A6[S Pole]
    end
    
    subgraph "Axial Flux Path"
        B1[N Pole] --> B2[Axial Air Gap]
        B2 --> B3[Stator Core]
        B3 --> B4[Radial Return]
        B4 --> B5[S Pole]
    end

Reluctance Considerations

Radial Flux:

R=lμ0μrA

where l is radial distance

Axial Flux:

R(r)=gμ0A(r)

where A(r)=2Ļ€rā‹…w

Leakage Flux

Radial Flux:

Axial Flux:

5. Power Density & Scaling Laws

graph LR
    subgraph "Scaling Relationships"
        A[Radial: P āˆ D²L] --> C[Linear Volume]
        B[Axial: P āˆ D³] --> D[Cubic Diameter]
        end
graph TD 
subgraph "Heat & Surface Area"    
        E[Heat āˆ Surface Area] --> F[Radial: āˆ DL]
        E --> G[Axial: āˆ D²]
    end

Radial Flux Scaling

PāˆD2ƗL

where D = diameter, L = length

Axial Flux Scaling

PāˆD3

Power Density Comparison:

PV=PĻ€D2L4Ā (Radial)vsPV=PĻ€D2t4Ā (Axial)

where t = axial thickness

6. Winding Configurations

flowchart TD
    A[Radial Windings] --> B[Long End Turns]
    C[Axial Windings] --> D[Short End Turns]
    B --> E[Higher Resistance]
    D --> F[Lower Resistance]

Radial Flux

Axial Flux

7. Performance Characteristics

graph TD
    A[Losses] --> B[Copper I²R]
    A --> C[Iron Core]
    A --> D[Mechanical]
graph LR    
    E[Efficiency] --> F[Pout/Pin]

Efficiency Comparison

General Efficiency Formula:

Ī·=PoutPout+Plosses=PoutPin

Radial Flux:

Axial Flux:

E-efficiency-classes-for-4-pole-motors-at-50-Hz-21.png

Speed Capabilities

Mechanical Speed Limit:

nmax=σmaxρπ2Ɨ60

where σmax = material stress limit, ρ = density

Radial Flux:

Axial Flux:

Gyroscope_operation-1.gif

8. Design Trade-offs

graph LR
        A[Cost] --> A1[Radial: Lower]
        A --> A2[Axial: Higher]
graph LR        
        B[Power Density] --> B1[Radial: Good]
        B --> B2[Axial: Excellent]
graph LR         
        C[Manufacturing] --> C1[Radial: Mature]
        C --> C2[Axial: Complex]
graph LR         
        D[Cooling] --> D1[Radial: Limited]
        D --> D2[Axial: Superior]

Advantages & Disadvantages

Aspect Radial Flux Axial Flux
Manufacturing Mature, standardized Complex, specialized tooling
Cost Lower (volume production) Higher (specialized)
Power Density Good for small-medium sizes Excellent for large diameters
Cooling Limited surface area Large flat surfaces
Bearing Loads Radial forces only Axial + radial forces
Scalability Linear with volume Cubic with diameter

Cost Analysis:

TCO=PurchasePrice+AnnualEnergyCostDiscountRate

9. Applications & Selection Criteria

flowchart TD
    A[Motor Selection] --> B{Application?}
    B -->|Standard| C[Radial]
    B -->|Space Limited| D[Axial]
    B -->|Cost Critical| C
    B -->|High Power| D

Choose Radial Flux When:

Choose Axial Flux When:

Selection Formula:

Merit Factor=Ī·Ć—PdensityCostƗComplexity

10. Future Developments

timeline
    title Motor Technology Evolution
    
    2020 : Traditional Radial Flux
         : Silicon Steel Cores
         : Ferrite Magnets
    
    2025 : Advanced Materials
         : Amorphous Steel
         : Rare Earth Magnets
         : Better Thermal Management
    
    2030 : Manufacturing Revolution
         : 3D Printed Components
         : Automated Winding
         : Cost Reduction
    
    2035 : Next Generation
         : AI-Optimized Designs
         : Novel Cooling Systems
         : Modular Architecture

Radial Flux Evolution

Axial Flux Innovation

Technology Readiness Levels:

TRL=f(Research,Development,Demonstration,Deployment)

PCB Motor Adaptation of Axial Flux Design

  1. MotorCell
  2. Carl Bugeja - Open Source PCB Motor Design
  3. Program your own PCB Motor

Click here to Learn about Axial Motor Calculations